YUCEL电池(中国)有限公司

几种YUCEL蓄电池在线测试技术比较分析

几种YUCEL蓄电池在线测试技术比较分析
英国YUCEL蓄电池知识阀控式铅酸YUCEL蓄电池(YUCEL)从一开始便被称为免维护电池,而生产厂家又承诺该电池的使用寿命为10 ~ 20年(最少为8年),这样就给我们电力系统维护人员一种误解,似乎这种电池既耐用又完全不需要维护,许多用户从装上电池后就基本上没有进行过维护和管理,在90年代初,随着使用时间的增长,使用的YUCEL电池出现了很多以前未遇到的新问题,例如电池壳变形、电解液渗漏、电极腐蚀、容量不足、电池端电压不均匀等,YUCEL电池内部接线柱、同极的连接片以及电极接头的腐蚀而断裂的现象也比开口式电池更常发生,这些故障都导致容量损失,但YUCEL电池端电压与放电能力无相关性,这使使用单位不易掌握YUCEL电池的耐久性和失效问题。我们维护部门以前往往只重视备用电源的设备部分的维护和管理,而忽视电池组的重大作用,殊不知断电的危险很大程度上就潜伏在电池组。 整组电池充电的特性是,如电池组内有一个或几个老化电池,其容量必然变小,充电器给电池组充电时,老化电池因容量小,将很快充满。充电器会误以为整组电池已充满而转为浮充状态,以恒定电压和小电流给电池组充电。其余状态良好的电池不可能充满。电池组将以老化电池的容量为标准进行充放电,经多次浮充--放电 --均充--放电--浮充的恶性循环,容量不断下降,电池后备时间缩短。
所以如不定时检测,电池和电池组的定期检测和在线监测是非常重要和必须的,已经是是电源系统中非常重要的环节。但是,从多年的运行维护效果来看,对于蓄电池进行电压检测已经不能充分反应蓄电池的问题,预警性和前瞻性较差,无法准确及时找出老化电池。因为浮充电压小幅值的差异监测并没有办法区别和处理,也就是对于电池性能变坏,电池容量已经大幅下降的老化电池的准确判断,电压参数无能为力,而是当放电时发现某电池的放电电压(或曲线)异常才有警告,但一般为时已晚。
如果无法十分清楚地了解蓄电池内部性能参数,如蓄电池的内阻、当前的剩余容量,如果蓄电池组中有落后的蓄电池,也无法提前准确判断和维护,所以蓄电池的内阻和当前的剩余容量的监测可以作为我们有效的手段,YUCEL电池和电池组在运行过程中,随着使用时间的增加必然会有个别或部分电池因内阻变大,呈退行性老化现象,实践证明,整组电池的容量是以状况最差的那一块电池的容量值为准,而不是以平均值或额定值(初始值)为准,当电池的实际容量下降到其本身额定容量的90% 以下时,电池便进入衰退期,当电池容量下降到原来的80%以下时,电池便进入急剧的衰退状况,衰退期很短,这时电池组已存在极大的事故隐患。
铅酸蓄电池的工作原理为“双硫酸盐化理论”,其结构部件主要为正极板(PbO2)、负极板(铅等重金属合金)、板栅等,铅酸蓄电池在放电时会形成结晶体,充电时铅离子被还原为金属铅。如果我们使用或维护不当,如经常充电不足或过放电,在电池正、负极板接线柱上会逐渐形成一种粗大而坚硬的PbSO4结晶体,这种现象称为“不可逆化的硫酸盐化”,简称“硫化”。“硫化”使蓄电池内阻增大、容量下降,这种不可逆的硫酸盐化的原因是硫酸铅的重结晶,粗大的结晶形成之后溶解度减少,硫酸铅的重结晶使晶体体积变大,是由于多晶体倾向于其表面自由能的结果。所以,电池产生硫化是蓄电池内阻增加的主要原因,而这对电池的使用寿命影响很大,使用什么样的方法进行内阻参数的测试将影响在线监测的最终效果。
在以上的背景下,前段时间的对于蓄电池的在线监测设备进行了深入的调研,以及参加了中试所对六家在线监测设备厂家进行产品试验,调研后发现各自有其不同的测试方法,总结下来主要是三大类,这几类在效果上分析起来有着明显的区别:二、交流测试法技术分析
交流法就是向蓄电池注入一个低频率的交流信号,由于蓄电池内部存在的阻抗,注入信号后测量其反馈的电流信号,进行信号处理,比较注入信号与反馈信号的差异,从而测得蓄电池内阻。交流法测量蓄电池阻抗依赖于高速的数字信号处理技术,但是在系统中的高频模块组成的充电机与外界噪音对信号的干扰无法彻底消除。
其原理可以用以下简单的公式表示:R=△V/△I
根据以上说明,以及在中试所的试验中所看到的测试结果来进行分析,对于交流法有以下几点看法:
1、对于交流注入法实际上只能定义为蓄电池的阻抗。
2、如右图一所示,一个单体的容量由正负极板形成的, 是传导通路的两个平行部分。通过交流信号或做阻抗测试时, 通路中任何部分的电阻增加都会由电容器掩盖。同时,不同频率的信号所测得的值也不同,对注入信号要求很高,如频率的稳定度和正弦波纯度都直接影响着测试结果。另外,在线测试时也易受充电器的纹波和谐波的干扰。
3、由于小容量蓄电池的内阻是毫欧级的数值,而大容量的蓄电池其内阻将是微欧级,从交流法的测试原理上我们知道,依靠测量其反馈的电流信号,进行信号处理,比较注入信号与反馈信号的差异得出内阻,但交流法的电流幅值非常小,一般1A(为了避免对系统的影响,不能太大),这么小的电流要在微欧级的微电阻上测量其差异变化,所以对于信号处理精度要求非常苛刻、严格,非常容易受到充电机与外界噪音对信号的干扰,导致测试结果的离散性大。
4、在直流系统中注入一个交流信号源,从本质上就对系统造成了污染,虽然厂家在不断研究降低频率(实际上是向直流逼近),但幅值不得不提高,但作为一个信号源不是负载,幅值的提高对系统将会对系统设备正常运行造成严重影响,因为我们知道对高频充电模块能够进行冗余并联是对于各模块的输出特性有严格要求的。

一铅酸YUCEL蓄电池的失效机理
铅酸电池的失效研究对于电源系统的安全运行具有重要的意义,我们对这一问题进行一下概要的讨论,以使读者对这一问题有一个概要的认识。
1.1电池失水   铅酸蓄电池失水会导致电解液比重增高、导致电池正极栅板的腐蚀,使电池的活性物质减少,从而使电池的容量降低而失效。  铅酸蓄电池密封的难点就是充电时水的电解。当充电达到一定电压时(一般在2.30V/单体以上)在蓄电池的正极上放出氧气,负极上放出氢气。一方面释放气体带出酸雾污染环境,另一方面电解液中水份减少,必须隔一段时间进行补加水维护。阀控式铅酸蓄电池就是为克服这些缺点而研制的产品,其产品特点为:  (1)采用多元优质板栅合金,提高气体释放的过电位。即普通蓄电池板栅合金在2.30V/单体(25℃)以上时释放气体。采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。  (2)让负极有多余的容量,即比正极多出10%的容量。充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即O2+2Pb→2PbO,PbO+H2SO4→H2O+PbSO4使负极由于氧气的作用处于欠充电状态,因而不产生氢气。这种正极的氧气被负极铅吸收,再进一步化合成水的过程,即所谓阴极吸收。  (3)为了让正极释放的氧气尽快流通到负极,必须采用和普通铅酸蓄电池所采用的微孔橡胶隔板不同的新超细玻璃纤维隔板。其孔率由橡胶隔板的50%提高到90%以上,从而使氧气易于流通到负极,再化合成水。另外,超细玻璃纤维板具有吸附硫酸电解液的功能,因此阀控式密封铅酸蓄电池采用贫液式设计,即使电池倾倒,也无电解液溢出。  (4)采用密封式阀控滤酸结构,使酸雾不能逸出,达到安全、保护环境的目的。
在上述阴极吸收过程中,由于产生的水在密封情况下不能溢出,因此阀控式密封铅酸蓄电池可免除补加水维护,这也是阀控式密封铅酸蓄电池称为免维电池的由来。   阀控式密封铅酸蓄电池均加有滤酸垫,能有效防止酸雾逸出。但密封蓄电池不逸出气体是有条件的,即:电池在存放期间内应无气体逸出;充电电压在2.35V/单体(25℃)以下应无气体逸出;放电期间内应无气体逸出。但当充电电压超过2.35V/单体时就有可能使气体逸出。因为此时电池体内短时间产生了大量气体来不及被负极吸收,压力超过某个值时,便开始通过单向排气阀排气,排出的气体虽然经过滤酸垫滤掉了酸雾,但必竟使电池损失了气体,所以阀控式密封铅酸蓄电池对充电电压的要求是非常严格的,不能造成过充电。